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I think;
therefore
I am.

Descartes
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Environment

Behavior

Brain

Allen institute

System
(circuits)

Brainbow (Lichtman Lab) Neurons

(and glia)

Synapses
NetPyNE

Genes,
molecules,
and proteins

AlphaFold (DeepMind)

Video recordings,
EMGs

Functional imaging
(optical imaging:
2p, 1p; fMRI, EEG,
opto-fMRI)

Pharmacology,
patch clamping

Understanding the brain, a challenge for the 21t Century!

Multi-modal ML
models, foundation
models (LLMs)

Physics simulators
(MuJoCo, OpenSim)

Computer vision
models

Network
neuroscience

CNNs, RNNs,
neural-
transformers

GLMs, latent
variable models

Hodgkin-Huxley

ODEs, LIF
RNAseq AlphaFold,
proteomiés gene-regulatory
networks
Data Tools and models

M. Mathis, Perez Rotondo, Cheng, Tolias, Mathis Cell 2024




How does the brain
| compute?

. Vs. Turing Machines, von Neumann
machines, ...

https://en.wikipedia.org/wiki



P

r

UUELWINSN UOA

-----

.....
e

A o BN

U v L U

. AT N

v -  BhE -‘kv
o

.....

,‘-q:‘:\‘ 8 Qo e

How does the brain

eda T ,‘
St e

_ vs. Turing Machines, von Neumann
fa Mmachines, ...



=PrL

How does the brain compute?

= Parallel processing

= Distributed representation and computation

= (Mostly) using action potentials/spikes (energy efficient)
= Broadly projecting neuromodulators

= Highly plastic
» Synaptic plasticity (Hebbian learning, STDP...)
« Dynamic gating (e.g. selective attention)
* Critical period/Development



Modeling approaches:

Classical modeling

Sparse coding, plasticity theory,
attractor models, low-dimensional
visualization, ...

Top-down modeling

Task-driven models optimized for an
ecological behavioral objective.
E.g., object recognition, next-word
prediction, optimal feedback control,

Bottom-up modeling

Start from biophysical, anatomical,
behavior observations and check
how they impact the model

E.g., SDS, ...

How does the brain
compute?

EPFL NX-414 overview



=PFL Modeling the brain

= Classic modeling
* Lecture 1 neural code
* Lecture 2 normative models
» Lecture 3 Bayes and attractor models

= Top-down modeling (task-driven)
» Lecture 4 path integration and vision |
* Lecture 5 vision |l
Lecture 6 vision lll and audition
Lecture 7 proprioception
Lecture 8 language |
Lecture 9 language Il
Lecture 10 motor control and OFC
Lecture 11 language Il and cognition
* Lecture 12 learning to control

= Bottom-up modeling
 Lecture 13 brain-inspired skill learning



EPFL Parall, modular processing
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Felleman and Van Essen Cerebral Cortex 1991

Cerebral cortex Cerebellum
Definition of the motor plan Timing, Coordination, and
Learning

“Decerebrated animal

Afferent

. Kandel et al. 4" edition Principles of Neural Science

a Encoding Decoding
Stimulus _— Neurons _— Behavior
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Yamins and Di Carlo, Nat Neuro 2016



=PFL  Distributed, energy-efficient representations

Results of training sparse coding model on 16 x 16 patches
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Olshausen & Field, 1996 Nature




=PFL  Distributed representations

Gardner et al. 2022 Nature
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=PFL  Neural Plasticity

Donald Hebb: “What fires together, wires together.”

wz Donald Hebb (1904 —1985)
xj 3 2 a y Wikipedia
X _,,,rwn T

n

inputs weights bias output
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Plasticity in the brain

Computational level:

= Unsupervised learning
= Supervised learning

= Reinforcement learning
= Transfer learning

= Curriculum learning

= Lifelong learning

Mechanistic level:

= Synaptic plasticity
* Long-term potentiation
» Short-term depression

= |ntrinsic plasticity

= Homeostatic plasticity
= Metaplasticity

= Neurogenesis
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What is intelligence?
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Definitions

“Viewed narrowly, there seem to be almost as many definitions of intelligence as
there were experts asked to define it.” — R. J. Sternberg

“We shall use the term ‘intelligence’to mean the ability of an organism to solve
new problems . ..~ W. V. Bingham

Intelligence measures an agent’s ability to achieve goals in a wide range of
environments. NOTE: it thus needs to be adaptive!

Universal Intelligence:
A Definition of Machine Intelligence

Shane Legg

IDSIA, Galleria 2, Manno-Lugano CH-6928, Switzerland
shane@vetta.org www.vetta.org/shane

Marcus Hutter

RSISE @ANU and SML @ NICTA, Canberra, ACT, 0200, Australia
marcus@hutteri.net www.hutterl.net



=PFL  What forms of intelligence did we cover?

= Visual intelligence (object recognition)
= Bodily intelligence (proprioception)

= Language

= Adaptive motor control

= Skill learning

= Path integration



=PrL

Some brain-like
computations
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Attractor models | now

o

start

Path integration in calculus:
(on a v. Neuman Machine)

Path integration in the brain:

(collective computation)
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Moving eastward

No motion

McNaugthon et al., Nature Review Neuroscience 2006



=L Attractor models Ii

STATE SPACE

Functions:

Associative memory
Decision making
Path integration

Khona & Fiete, Nat Review Neuro 2021



=PFL Hierarchical, convolutional neural networks

a Encoding Decoding
Stimulus

Neurons : Behavior

Y

\Z PIT CIT AIT

«--- «----

Pixels visual
presentation

Spatial convolution

over image input

Yamins and Di Carlo, Nat Neuro 2016
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DMAP’s brain inspired architecture

Time

Proprioceptive
state history

AN
IAVAV
AT

TCN

TCN

TCN

Independent
representations

118

- T =

Channel features

DMAP - Distributed Morphological Attention Policy

K
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Joint-channel
attention

\'
u n
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Distributed
joint controllers
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— O

.

— Action

Chiappa, Marin Vargas, Mathis, Neurips 2022 /arxiv



=PFL  Cortical column

underlying image from: @ ®@
Marcel Oberlinder, Beyond the Cortical Column, Neuroinfomatics 2012 CCBY-SA4.0



1 mm? of human temporal cortex

A petavoxel fragment

of human cerebral T ot
cortex reconstructed = proo.
at nanoscale resolution i '« & e .

Synaptic N «‘ 2 o F

resolution

“We found a previously unrecognized class of T : ' ke | H

directionally oriented neurons in deep layers Co e : (NI
(see figure, panel ]) and very powerful and TN AN
rare multisynaptic connections between . | AT
neurons throughout the sample (see figure, = ot Ly A Y Tmm

panel K).”

Triangular
neurons

Multisynaptic
connections

Shapson-Coe, ... Lichtman, Science 2024


https://h01-release.storage.googleapis.com/landing.html
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""“l From: Large Language Models and the Reverse Turing Test

Neural Comput. 2023;35(3):309-342. doi:10.1162/neco_a_01563

The Transformer Loop

Outpxt
Procatatos

Decoder

The Cortical — Basal Ganglia Loop

Sejnowski, Neural Computation 2023



=rFL Dopaminergic circuits and reward prediction errors

No prediction
Reward occurs

Reward predicted
Reward occurs

Nucleus

Mesocortical accumbens

pathway

Nigrostriatal
pathway

Tbero-

infundibular Substantia

Nigra Reward predicted

pathway
imbi Pituitary Ventral No reward occurs
Mesolimbic egmental Area
pathway
Wikipedia
Cs (No R)
[

Schultz, Dayan, Montague, 1997



A Neural Substrate of
Prediction and Reward

Wolfram Schultz, Peter Dayan, P. Read Montague*

The capacity to predict future events permits a creature to detect, model, and manipulate
the causal structure of its interactions with its environment. Behavioral experiments
suggest that learning is driven by changes in the expectations about future salient events
such as rewards and punishments. Physiological work has recently complemented these
studies by identifying dopaminergic neurons in the primate whose fluctuating output
apparently signals changes or errors in the predictions of future salient and rewarding
events. Taken together, these findings can be understood through quantitative theories
of adaptive optimizing control.

V(sy) « V(s + at\(Rt + YV (Sp41) — V(St)))

|

Dopamine? Schultz, Dayan, Montague, Science 1997




=PFL Reinforcement leaming scales really well!

Parameters 91

g

Convolution Convolution Fully connected Fully connec t
v - v

= The computational and memory
requirements (even) for games is
enormous!
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Mnih et al., Nature 2013 (Deep Mind)
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Building
brain-like models
(top-down)
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Biological Intelligence - Artificial Intelligence

T o

)

T

Hausmann*, Marin-Vargas*, Mathis**, Mathis**, Curr op. in Neuro., 2021



EPFL Nomative frameworks

Information theoretic

e.g. sparse coding,
redundancy reduction,
mutual information ...

T~

Utilitarian

e.g. recognize objects,
chase prey, navigate, path
integration, localize body
parts, control limbs ...



=prL. Example: proprioception

HYPOTHESES TESTING

Ingredient 3: Task1

Putative goals (of proprioception)
Task2

xxxxxu g;; ;1 FLLES .
Prlmary ‘

somatosensory cortex CN © =
Ingredient 2: Thalamus ; 2
AN Cuneate nucleus £ ™
i iy

Spinal cord )

Ingredient 1: simulating spindle dynamics at scale
Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024



=PFL  Task-performance and neural predictability are comrelated

XY,z
W m=B, r=-0.268, p=2.55e-06 m=C, r=-0.313, p=3.10e-08
v » m=L,r=-0.337, p=2.22¢-09 - m=H, r=-0.278, p=1.00e-06
¢ m=5,r=-0.374, p=2.18e-11 .« m=SIL, r=-0.241, p=2.48e-05
Hand pos. & Vel Hand pos. & Vel

Hand position and velocity
task (HP & HV)
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>

Different model architectures
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Normalized neural predictivity
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Using deep neural networks as goal-driven models of a system

Model architecture class

e
o tn -

—_— ,A,/?
e

Vision: object recognition.
Yamins & Hong et al. (2014),
Schrimpf & Kubilius et al. (2018) :‘AT‘ Language: next-word prediction.
Audition: speech recognition, speaker & — —— Schrimpfetal. (2021), ..
sound identification. Kell et al. (2018), ... ti Decision making: con’FeXt—dependent
Somatosentation: shape recognition. choice. Mante & Sussilo et al. (2013),
Zhuang et al. (2017) Proprioception: action recognition.
ﬂ Sandbrink et al. (2023)

Yamins & DiCarlo (2016)




=PFL  Statistical models

= At this point, we can build powerful models (task-driven, data-driven)

= \We can compare hypotheses and scaling of models (why questions)
= Enables causal experiments

Closed loop
experimental

M. Mathis, Perez Rotondo, Cheng, Tolias, Mathis Cell 2024



"L Emergence of brain-like tuning in path integration and
motor control

A C

Place cell centers
a | — Simulated trajectory
== Decoded position
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Susillo et al. Nature Neuro 2015
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Sorscher et al. Neuron 2022



=PFL Inverse models of perception and motor control

Representation of the

Environment/Body/Task
? P(G|M) causal model
3
P(M) Movement prior
Recognition| |Generative Control Causal
Model Model Model Model
! P(M|G)
Senso Motor .. .
Input i Output Objective: find motor commands

with high posterior probability!

The thin arrows correspond to the the directions that are desirably but harder to implement!

The thick arrows correspond to well-defined (relatively simpler transformations);
e.g., - generative model of vision: given the state of the world, predicting the retinal image (Optics,... )

= - causal model: given a motor command we can predict how it will change the world (Newtonian physics, ..) Todorov, 1998



=PFL  Optimal feedback control (OFC) theory

Noise
=» Movement
Optimal
Task selection =»| feedback corl\n/lr?]tgrq =
control law
A Efferent
System state copy
(positions, velocities,

A4

forces) —— g "
& | ptima ensory
{ state estimator | feedback

Scott, Nature Reviews Neuroscience 2004




=PFL  OFC predicts many behavioral features of motor
control

Narrow target Wide target

— Unperturbed movement
— Perturbed movement

Nashed, Crevecoeur & Scott J. Neuro 2012
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Building
brain-like models
(bottom-up)
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Time

Proprioceptive
state history

AN
IAVAV
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TCN

TCN

TCN

Independent
representations

m

DMAP’s brain inspired architecture

DMAP - Distributed Morphological Attention Policy

K
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Joint-channel
attention
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u n
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joint controllers

— QO —
— [y —

— Action

- fEE-

Channel features

Chiappa, Marin Vargas, Mathis, Neurips 2022 /arxiv




EPFL  Natural language instructions induce compositional generalization in
networks of neurons

a b N
Performance on novel tasks Distribution of performance on novel tasks (%)
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Riveland & Pouget, Nature Neuro 2024



=PFL  Cumiculum leaming

» Static to Dynamic Stability (SDS)

» SDS creates stability at desired states before
learning a policy that reaches them

* Acurriculum gradually transforms static stability into dynamic
movement motifs

Chiappa*, A. S., Tano*, P., Patel*, N., Ingster, A., Pouget, A., & Mathis, A. Neuron 2024
Caggiano et al. Proceedings of the NeurlPS 2022 Competitions Track, PMLR 220:233-250
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Artificial and biological
Intelligence




=PFL  The rise of artificial intelligence...

+ Sejnowski and AlphaFold 1, ChatGPT From OpenAl Is A Bot

Rosenberg create a technology

the neural network, capable of predicting Takmg The Tech WOIId BY Sform

* Bayes' theorem

is published. * Arthur NetTalk.

° protein structures, X
George Boole Samuel . GOOgle — te craatack 100 Relative Google Searches 12« _ Subscribers on r/chatgpt
§ creates Boolean creates the first ) [Worldwide, indexed volume] 10k [Redditusers]
PlAL/E] = PIB/AL - PlAL) Logic. - an unsupervised
n

EPIB/AT- PIA] _ ot o2

¢ 80
©
neural network. m %
b

7 g o
v Sow XN 40 ensa
@ @ @ @ @ @ @ 2006 2012 2016 2018 G ®

“chatgpt” 2%
o Ok o—o
Nov-16 Nov-23 Nov-30 Dec-07 Ree:011 Dac 02 i Bac:03( SiDsc:07
Ada Lovelace Alan Turing proposes MADALINE, the first Geofrrey Hinton AlphaGo beats 1,250,000 — Stylized Path To 1 Million Users* [# of days from launch]
lays the' a machine that artificial neural anents the tgrm_ the first hurman ihen @ chaicH @ instagram Spotify .
foundations can learn. network, is created. Deep Learning™. player. G -5 days 75 days 150 days
of the first » . 750,000
algorithm,
¢ 500,000
.
. . . 250,000
5 - # of days
0 25 50 75 100 125 150
Sources: Google, Subredditstats, Media Reports char’t *Path is stylized to the Im milestone

Image source: htt ps://www.algotive ai/blog/machine-leaming-wha t-is-ml-and-h ow-d oes-it-work
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Remember, the bitter lesson...

=

Richgfd Sutton

“The bitter lesson is based on the historical observations that 1) Al
researchers have often tried to build knowledge into their agents, 2) this
always helps in the short term, and is personally satisfying to the
researcher, but 3) in the long run it plateaus and even inhibits further
progress, and 4) breakthrough progress eventually arrives by an opposing
approach based on scaling computation by search and learning. The
eventual success is tinged with bitterness, and often incompletely digested, because
it is success over a favored, human-centric approach.”

http://www.incompleteideas.net/Incldeas/BitterLesson.html



=PFL  The human brain has a lot of parameters....

GPT-3 has 175-billion parameter

1T
—— Approach 1
1008 —— Approach 2
" —— Approach 3
8 10 === Kaplan et al (2020) Human cortex has
<)
£ L
© Yt Chinchilla (70B) -
£ 108 % Gopher (2808) ~250 million synapses/mm3
Y GPT-3 (175B)
Y Megatron-Turing NLG (530B)
100M
10“11017" 1019 1021 1023 1025
FLOPs
https://sebastianraschka.com/blog/2023/lIm-reading-list.ntml
-

Sherwood et al. Cerebral Cortex 2020



Is scale s all you need?

PF-day = 10® x 24 x 3600 = 8.64 x 10'° floating point operations.

7 4.2
6 —— L=(D/5.4-1013)709% | 5.6 —— L=(N/8.8-1013)70076
3.9
4.8
2° 36
. 4.0
9S4
‘g,'; 3.3 32
=3
3.0
2.4
L= (Cnin/2.3" 108)-0.050
2 2:7
i0-® 1077 105 103 10! 10! 108 109 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute® used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not

bottlenecked by the other two.

NeurlPS 2023

Schaeffer, Miranda & Koyejo,

Figure 1: Emergent abilities of large language models. Model families display sharp and unpre-
dictable increases in performance at specific tasks as scale increases. Source: Fig. 2 from [33].

Kaplan et al. 2020

(A) Mod. arithmetic  (B) IPA transliterate  (C) Word unscramble
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Read this paper, they
have a great critique
of what the emergent
abilities mean!
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smoky short-tailed
shrew shrew

< @.
0.176 g
36 M

guinea pig marmoset

o g»

g
3.759 g

7.78 g
240 M 634 M

capybara

macaque monkey

mouse

03479 o0.416g
52 M 71M

star-nosed
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200 M

1.020g 0.802g
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o

18.365 g 104139 15.73 g
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squirrel monkey
capuchin monkey

Note: numbers of neurons increase faster in the cerebral cortex and
cerebellum than in the remaining brain areas...

Neurons in cerebral cortex

10" 10M
E L ]
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o 10\0
o PO e . o
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108 L ; °
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o .‘. rodents, a=1.115 S 108 » rodents, a=1.200
1074 primates, 0=1.262 3 L °
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108 T T T 107 T T T
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Neurons in brainstem+dienc+basal ganglia Neurons in brainstem+dienc+basal ganglia

Herculano-Houzel, Frontiers Human Neurosci, 2009
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Is it just a question of scaling Al up?

AERONAUTICS. Ylate 1.
Dlanchants Battoon.

Mongyolticss Bulloon

Charies Roberts Balloon

Tt o the Winps cmployed by Blanchand

e

PR - Pkt et et Apr 808 by R Ponner Ftirnastr Ko Prversthy AN T 825

This 1818 technical illustration shows early
balloon designs — Wikipedia.

Hindenburg disaster, 1937

Analogy from great talk by McCleland: “Can we capture intelligence in a neural

network? Professor Jay McClelland “



https://www.youtube.com/watch?v=bgDkAW06wTs
https://www.youtube.com/watch?v=bgDkAW06wTs
https://www.youtube.com/watch?v=bgDkAW06wTs
https://www.youtube.com/watch?v=bgDkAW06wTs

=PrL

What is missing to
understand biological
Intelligence?




=PFL  Ingredients for closing the gap that we discussed

= |Internal models

= Inductive biases (innate architecture)

= Better exploration

= Baked in reward functions (which we don’t know...)
= Using language

= Curriculum learning

= Deliberate practice



cPrL What was this course about?

Biological Intelligence - Artificial Intelligence

)

T

Hausmann*, Marin-Vargas*, Mathis**, Mathis**, Curr op. in Neuro., 2021



=PrL  Artificial and biological intelligence

Neuroscience and machine learning have a “long, intertwined history”?....

.... and exciting future ... join the journey!

E.g., check out this review that used this phrase: Neuroscience-Inspired Artificial Intelligence by Hassabis et al., Neuron 2017



https://www.cell.com/neuron/pdf/S0896-6273(17)30509-3.pdf

=PFL  Biological intelligence and natural intelligence are /7 vogue ...

Simons Foundation Launches Collaboration on
Ecological Neuroscience

HARVARD UNIVERSITY

The Simons Collaboration on Ecological Neuroscience (SCENE) is a 10-year
program that will support projects aimed at uncovering how opportunities for
action offered by the world shape representations in the mind and the brain.

ABOUT US

We seek to understand the basis of
intelligence in natural and artificial
systems.

MIT
Quest for
e Intelligence

= Our mission

MAX PLANCK INSTITUTE
FOR BIOLOGICAL INTELLIGENCE
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7L Grading

Assessment methods

= The final mark is a combination of three evaluations:
« problem sets (26%) - scores will be on Moodle by next week!
* quizzes (25%) = scores are on Moodle!

* final exam (50%)
= You can bring 1 A4 page cheat sheet (both sides can be used)



=PrL

What did we cover?

Class Date Topic
1 19/02/2025 Introduction & neural code
2 26/02/2025 Normative models
3 05/03/2025 Bayes and Brain-like circuits
4 12/03/2025 Task-driven models (Path integration)
5 19/03/2025 Task-driven models (Vison)
6 26/03/2025 Task-driven (Unsupervised, Audition, metamers, optimal stimuli)
7 02/04/2025 Task-driven Somatosensation
8 09/04/2025 Language modeling in the brain |
9 16/04/2025 Language modeling in the brain Il
10/ 23/04/2025 EPFL Easter break [} {&
11 30/04/2025 Motor control
12 07/05/2025 Language modeling in the brain Ill (language in the service of cognition)
13 14/05/2025 Reinforcement learning

14 21/05/2025 Skill learning

15 28/05/2025 Review




=PrL

Thanks to the team!

Martin Schrimpf

Thanks to our TAs:

Abdulkadir Gokce (PhD student)
Merkourios Simos (PhD Student)
Hossein Mirzaei (PhD Student)
Michael Hauri (NX student)




=PrL

Class feedback, please
fill it out on moodie!

This was the third time, we would
greatly appreciate comments!

https://moodle.epfl.ch/my/courses.php

| Brain-like computation and intelligence (NX-414_SP25) . . igesponse: 13 % amm Closes in 15 Days
—® NX-414_SP25 ’ 08.06.2025 23:59:00
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Thank you for attending!

Thanks to our TAs:

Abdulkadir Gokce (PhD student)
Merkourios Simos (PhD Student)
Hossein Mirzaei (PhD Student)
Michael Hauri (NX student)
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