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vs. Turing Machines, von Neumann 
machines, … 

https://en.wikipedia.org/wiki/Human_brain https://en.wikipedia.org/wiki/The_Computer_and_the_Brain



▪ Parallel processing

▪ Distributed representation and computation

▪ (Mostly) using action potentials/spikes (energy efficient)

▪ Broadly projecting neuromodulators

▪ Highly plastic

• Synaptic plasticity (Hebbian learning, STDP…)

• Dynamic gating (e.g. selective attention) 

• Critical period/Development

• … 

How does the brain compute?



How does the brain 
compute?

EPFL NX-414 overview

Modeling approaches:

• Classical modeling
Sparse coding, plasticity theory, 
attractor models, low-dimensional 
visualization, …

• Top-down modeling
Task-driven models optimized for an 
ecological behavioral objective.
E.g., object recognition, next-word 
prediction, optimal feedback control, 
…

• Bottom-up modeling
Start from biophysical, anatomical, 
behavior observations and check 
how they impact the model
E.g., SDS, … 



▪ Classic modeling
• Lecture 1 neural code

• Lecture 2 normative models

• Lecture 3 Bayes and attractor models

▪ Top-down modeling (task-driven)
• Lecture 4 path integration and vision I

• Lecture 5 vision II

• Lecture 6 vision III and audition

• Lecture 7 proprioception

• Lecture 8 language I

• Lecture 9 language II

• Lecture 10 motor control and OFC

• Lecture 11 language III and cognition

• Lecture 12 learning to control

▪ Bottom-up modeling
• Lecture 13 brain-inspired skill learning

Modeling the brain



Parallel, modular processing

Felleman and Van Essen Cerebral Cortex 1991 Yamins and Di Carlo, Nat Neuro 2016

. Kandel et al. 4th edition Principles of Neural Science



Distributed, energy-efficient representations

Olshausen & Field, 1996 Nature

Results of training sparse coding model on 16 x 16 patches



Distributed representations

Gardner et al. 2022 Nature



Elegant, distributed representations
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Neural Plasticity

Donald Hebb: “What fires together, wires together.”

Donald Hebb (1904 –1985)
Wikipedia



Computational level:

▪ Unsupervised learning

▪ Supervised learning

▪ Reinforcement learning

▪ Transfer learning

▪ Curriculum learning 

▪ Lifelong learning

Mechanistic level:

▪ Synaptic plasticity

• Long-term potentiation 

• Short-term depression

▪ Intrinsic plasticity

▪ Homeostatic plasticity

▪ Metaplasticity

▪ Neurogenesis

▪ …

Plasticity in the brain



What is intelligence?



“Viewed narrowly, there seem to be almost as many definitions of intelligence as 
there were experts asked to define it.” — R. J. Sternberg

“We shall use the term ‘intelligence’ to mean the ability of an organism to solve 
new problems . . . ” W. V. Bingham

Intelligence measures an agent’s ability to achieve goals in a wide range of
environments. NOTE: it thus needs to be adaptive!

Definitions



▪ Visual intelligence (object recognition)

▪ Bodily intelligence (proprioception)

▪ Language 

▪ Adaptive motor control

▪ Skill learning

▪ Path integration

▪ …

What forms of intelligence did we cover?



Some brain-like 
computations



Attractor models I

McNaugthon et al., Nature Review Neuroscience 2006

න

𝑠𝑡𝑎𝑟𝑡

𝑛𝑜𝑤

𝑑 𝛾Path integration in calculus: 
(on a v. Neuman Machine)

Path integration in the brain: 
(collective computation)



Attractor models II

Functions:
- Associative memory
- Decision making 
- Path integration 
- …

Khona & Fiete, Nat Review Neuro 2021



Hierarchical, convolutional neural networks

Yamins and Di Carlo, Nat Neuro 2016



DMAP’s brain inspired architecture

Chiappa, Marin Vargas, Mathis, Neurips 2022 /arxiv



Cortical column



A petavoxel fragment 
of human cerebral 
cortex reconstructed 
at nanoscale resolution

Shapson-Coe, … Lichtman, Science 2024

“We found a previously unrecognized class of 
directionally oriented neurons in deep layers 
(see figure, panel J) and very powerful and 
rare multisynaptic connections between 
neurons throughout the sample (see figure, 
panel K).”

Browse it online!

https://h01-release.storage.googleapis.com/landing.html


From: Large Language Models and the Reverse Turing Test 

Neural Comput. 2023;35(3):309-342. doi:10.1162/neco_a_01563

Sejnowski, Neural Computation 2023



Dopaminergic circuits and reward prediction errors

Schultz, Dayan, Montague, 1997

Wikipedia



Schultz, Dayan, Montague,  Science 1997

𝑉 𝑠𝑡 ←𝑉 𝑠𝑡 + 𝛼𝑡(𝑅𝑡 + 𝛾𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡 )

Dopamine?



▪ The computational and memory 
requirements (even) for games is 
enormous! 

Reinforcement learning scales really well!

Mnih et al., Nature 2013 (Deep Mind)

Parameters



Building 
brain-like models 
(top-down) 



Biological Intelligence Artificial Intelligence

Hausmann*, Marin-Vargas*, Mathis**, Mathis**, Curr op. in Neuro., 2021



Information theoretic

e.g. sparse coding, 
redundancy reduction, 
mutual information …

Utilitarian

e.g. recognize objects, 
chase prey, navigate, path 
integration, localize body 
parts, control limbs …

Normative frameworks



Example: proprioception

Ingredient 1: simulating spindle dynamics at scale

Ingredient 2: 
ANNs

Ingredient 3: 
Putative goals (of proprioception) 

Marin Vargas* A., Bisi* A., Chiappa A., Versteeg C., Miller L., Mathis A. Cell 2024



Task-performance and neural predictability are correlated

Hand pos. & Vel Hand pos. & Vel

Different model architectures

Optimized on biomechanics (body)



Example: language

Schrimpf et al. PNAS 2021



Vision: object recognition. 
Yamins & Hong et al. (2014), 
Schrimpf & Kubilius et al. (2018)

Audition: speech recognition, speaker & 
sound identification. Kell et al. (2018), …

Somatosentation: shape recognition. 
Zhuang et al. (2017) Proprioception: action recognition. 

Sandbrink et al. (2023)

Decision making: context-dependent 
choice. Mante & Sussilo et al. (2013),

Using deep neural networks as goal-driven models of a system

Yamins & DiCarlo (2016) 

Language: next-word prediction. 
Schrimpf et al. (2021), … 



▪ At this point, we can build powerful models (task-driven, data-driven)

▪ We can compare hypotheses and scaling of models (why questions) 

▪ Enables causal experiments

Statistical models

M. Mathis, Perez Rotondo, Cheng, Tolias, Mathis Cell 2024



Emergence of brain-like tuning in path integration and 
motor control

Sorscher et al. Neuron 2022

Susillo et al. Nature Neuro 2015



Inverse models of perception and motor control

Todorov, 1998

The thin arrows correspond to the the directions that are desirably but harder to implement!

The thick arrows correspond to well-defined (relatively simpler transformations); 
e.g., - generative model of vision: given the state of the world, predicting the retinal image (Optics,… )

- causal model: given a motor command we can predict how it will change the world (Newtonian physics, ..)

𝑃(𝑀|𝐺)

𝑃(𝐺|𝑀)

𝑃(𝑀)

causal model

Movement prior

Objective: find motor commands 
with high posterior probability! 



Optimal feedback control (OFC) theory 

Scott, Nature Reviews Neuroscience  2004



OFC predicts many behavioral features of motor 
control

Nashed, Crevecoeur & Scott J. Neuro 2012



Building 
brain-like models
(bottom-up)  



DMAP’s brain inspired architecture

Chiappa, Marin Vargas, Mathis, Neurips 2022 /arxiv



Natural language instructions induce compositional generalization in 
networks of neurons

Riveland & Pouget, Nature Neuro 2024



Curriculum learning

▪ Static to Dynamic Stability (SDS)

• SDS creates stability at desired states before
learning a policy that reaches them

• A curriculum gradually transforms static stability into dynamic 
movement motifs

Static stability

Final task

Dynamic stability

Caggiano et al. Proceedings of the NeurIPS 2022 Competitions Track, PMLR 220:233-250

Chiappa*, A. S., Tano*, P., Patel*, N., Ingster, A., Pouget, A., & Mathis, A. Neuron 2024



Artificial and biological 
intelligence



Image source: https://www.algotive.ai/blog/machine-learning-what-is-ml-and-how-does-it-work

The rise of artificial intelligence…



Remember, the bitter lesson…

Richard Sutton

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

“The bitter lesson is based on the historical observations that 1) AI 
researchers have often tried to build knowledge into their agents, 2) this 
always helps in the short term, and is personally satisfying to the 
researcher, but 3) in the long run it plateaus and even inhibits further 
progress, and 4) breakthrough progress eventually arrives by an opposing 
approach based on scaling computation by search and learning. The 
eventual success is tinged with bitterness, and often incompletely digested, because 
it is success over a favored, human-centric approach.”



GPT-3 has 175-billion parameter

Human cortex has

~250 million synapses/mm3

The human brain has a lot of parameters….

https://sebastianraschka.com/blog/2023/llm-reading-list.html

Sherwood et al. Cerebral Cortex 2020



Is scale is all you need?

Mehonic & Kenyon Nature 2022

Kaplan et al. 2020
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Read this paper, they 
have a great critique 

of what the emergent 
abilities mean!



Scale seems to be all you need…

Herculano-Houzel, Frontiers Human Neurosci, 2009

Note: numbers of neurons increase faster in the cerebral cortex and 
cerebellum than in the remaining brain areas…



Is it just a question of scaling AI up?

This 1818 technical illustration shows early 

balloon designs – Wikipedia.

Hindenburg disaster, 1937

Analogy from great talk by McCleland: “Can we capture intelligence in a neural 
network? Professor Jay McClelland “

https://www.youtube.com/watch?v=bgDkAW06wTs
https://www.youtube.com/watch?v=bgDkAW06wTs
https://www.youtube.com/watch?v=bgDkAW06wTs
https://www.youtube.com/watch?v=bgDkAW06wTs


What is missing to 
understand biological 
intelligence?



▪ Internal models

▪ Inductive biases (innate architecture)

▪ Better exploration 

▪ Baked in reward functions (which we don’t know…)

▪ Using language

▪ Curriculum learning 

▪ Deliberate practice 

▪ …. 

Ingredients for closing the gap that we discussed



Biological Intelligence Artificial Intelligence

Hausmann*, Marin-Vargas*, Mathis**, Mathis**, Curr op. in Neuro., 2021

What was this course about?



Neuroscience and machine learning have a “long, intertwined history”1….

…. and exciting future … join the journey!   

Artificial and biological intelligence

E.g., check out this review that used this phrase: Neuroscience-Inspired Artificial Intelligence by Hassabis et al., Neuron 2017 

https://www.cell.com/neuron/pdf/S0896-6273(17)30509-3.pdf


Biological intelligence and natural intelligence are in vogue …



Logistics



Assessment methods

▪ The final mark is a combination of three evaluations: 

• problem sets (25%) → scores will be on Moodle by next week!

• quizzes (25%) → scores are on Moodle! 

• final exam (50%)

▪ You can bring 1 A4 page cheat sheet (both sides can be used)

Grading 



What did we cover?
Class Date Topic

1 19/02/2025 Introduct ion & neural  code

2 26/02/2025 Normat ive models

3 05/03/2025 Bayes and Brain-like ci rcuits

4 12/03/2025 Task-driven models (Path integration)

5 19/03/2025 Task-driven models (Vison)

6 26/03/2025 Task-driven (Unsupervised, Audit ion, metamers, opt imal stimul i)

7 02/04/2025 Task-driven Somatosensation

8 09/04/2025 Language modeling in the brain I

9 16/04/2025 Language modeling in the brain II

10 23/04/2025 EPFL Easter  break 

11 30/04/2025 Motor control

12 07/05/2025 Language modeling in the brain III  (language in the service of cognition)

13 14/05/2025 Reinforcement learning

14 21/05/2025 Skill learning

15 28/05/2025 Review



Thanks to the team!

Martin Schrimpf

Thanks to our TAs:

Abdulkadir Gokce (PhD student)

Merkourios Simos (PhD Student)

Hossein Mirzaei (PhD Student)

Michael Hauri (NX student)



Class feedback, please 
fill it out on moodle!

This was the third time, we would 
greatly appreciate comments! 

https://moodle.epfl.ch/my/courses.php



Thank you for attending!

Thanks to our TAs:

Abdulkadir Gokce (PhD student)

Merkourios Simos (PhD Student)

Hossein Mirzaei (PhD Student)

Michael Hauri (NX student)
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